Non-invasive self-referencing electrochemical sensors for quantifying real-time biofilm analyte flux.
نویسندگان
چکیده
Current techniques for characterizing biofilm physiology lack the signal filtering capability required for quantifying signals associated with real time biologically active transport. Though a great deal was learned from previous investigations, no results have been reported on the characterization of in vivo, real time biofilm flux using non-invasive (non-destructive) techniques. This article introduces the self-referencing technique for applications in biofilm physiology. Self-referencing is a non-invasive sensing modality which is capable of sensing changes in biologically active analyte flux as small as 10 fmol cm(-2) s(-1). Studies directly characterizing flux, as opposed to concentration, have the advantage of quantifying real time changes in biologically active transport which are otherwise lost to background noise. The use of this modality for characterizing biofilm physiology is validated with a reversible enzyme inhibition study. The experiment used self-referencing potentiometric sensors for quantifying real time ammonium and nitrite flux. Amperometric and optical sensing methods, though not presented herein, are also powerful sensing tools which benefit from operation in self-referencing mode. Reversible ammonia monooxygenase inhibition by a copper chelator (thiourea), and subsequent relief by excess copper addition was successfully demonstrated using self-referencing ion-selective microelectrodes for a mature Nitrosomonas europaea biofilm.
منابع مشابه
Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research.
Physiological studies require sensitive tools to directly quantify transport kinetics in the cell/tissue spatial domain under physiological conditions. Although biosensors are capable of measuring concentration, their applications in physiological studies are limited due to the relatively low sensitivity, excessive drift/noise, and inability to quantify analyte transport. Nanomaterials signific...
متن کاملSelf-referencing optrode technology for non-invasive real-time measurement of biophysical flux and physiological sensing.
Vibrating probe technology has enabled scientific investigations that have expanded our knowledge of form and function in biology, but the emergence of new fields of cytomics and physiomics will require new technologies to probe the functional realm of living cells. In this paper, we present the development of a self-referencing optrode, which represents the next generation of biophysical flux ...
متن کاملA self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport.
Glucose is the central molecule in many biochemical pathways, and numerous approaches have been developed for fabricating micro biosensors designed to measure glucose concentration in/near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic activity of ce...
متن کاملIntegrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest.
Eccrine sweat has rapidly emerged as a non-invasive, ergonomic, and rich source of chemical analytes with numerous technological demonstrations now showing the ability for continuous electrochemical sensing. However, beyond active perspirers (athletes, workers, etc.), continuous sweat access in individuals at rest has hindered the advancement of both sweat sensing science and technology. Report...
متن کاملRecent Updates of DNA Incorporated in Carbon Nanotubes and Nanoparticles for Electrochemical Sensors and Biosensors
Innovations in the field of electrochemical sensors and biosensors are of much importance nowadays. These devices are designed with probes and micro electrodes. The miniaturized designs of these sensors allow analyses of materials without damaging the samples. Some of these sensors are also useful for real time analysis within the host system, so these sensors are considered to be more advantag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 102 3 شماره
صفحات -
تاریخ انتشار 2009